This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

INFLUENCE OF WATER VAPOR ON P₃O³₉- RING OPENING DURING THE THERMAL DEHYDRATION OF NaCaP₃O₉,3H₂O

M. H. Simonot-grange^a; P. Jamet^a

^a Laboratoire de Recherches sur la, Réactivité des Solides associé au C.N.R.S. Faculté des Sciences, Mirande, Dijon

To cite this Article Simonot-grange, M. H. and Jamet, P.(1977) 'INFLUENCE OF WATER VAPOR ON P $_3O_9^3$ - RING OPENING DURING THE THERMAL DEHYDRATION OF NaCaP $_3O_9$,3H $_2O'$, Phosphorus, Sulfur, and Silicon and the Related Elements, 3: 2, 197 — 202

To link to this Article: DOI: 10.1080/03086647708077712 URL: http://dx.doi.org/10.1080/03086647708077712

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

INFLUENCE OF WATER VAPOR ON P₃O₃² RING OPENING DURING THE THERMAL DEHYDRATION OF NaCaP₃O₉,3H₂O

M. H. SIMONOT-GRANGE and P. JAMET

Laboratoire de Recherches sur la Réactivité des Solides associé au C.N.R.S. Faculté des Sciences Mirande, 21000 Dijon

(Received July 24, 1976; in final form October 19, 1976)

The study of the heterogeneous system $NaCaP_3O_9, 3H_2O-H_2O_{(g)}$ allowed the internal hydrolysis of $P_3O_9^3$ rings to be shown, which explains its instability. In the absence of water vapor pressure, $NaCaP_3O_9, 3H_2O$ loses its $3H_2O$'s reversibly.

INTRODUCTION

The extent of hydration of sodium calcium trimetaphosphate ranges from $2H_2O$ to $3H_2O$, depending on authors. A. Durif noticing that it depended on the ambient water vapor pressure, concluded that some zeolitic water was present in this compound. W. Feldmann noticed, first a partial cutting of $P_3O_9^3$ rings yielding monophosphate, diphosphate and an anhydrous trimetaphosphate, around 150° C, then the presence of the anhydrous trimetaphosphate alone, between 250° C and 300° C and finally polyphosphate formation about 500° C. We resumed the thermal dehydration of $NaCaP_3O_9, 3H_2O$ to show the extent to which this compound contains mobile water and to clarify the transformation process of hydrated trimetaphosphate to anhydrous trimetaphosphate.

EXPERIMENTAL

Thermogravimetry (MacBain-type thermobalance), differential thermal analysis coupled with thermogravimetry and x-ray diffractometry in a heating cell were used. These methods specially adapted to fix a given water vapor pressure on the sample are well known. 6-8 Thin-layer cellulose chromatography allowed the extent of condensation of the various phosphates formed to be identified. 9

ADSORPTION CAPACITY

Water adsorption-desorption isotherms, at 25°C, were plotted for several plugs of sodium calcium trimetaphosphate prepared by alcohol precipitation of an aqueous solution of Na₃P₃O₉ and CaCl₂ (Figure 1). Depending on the plugs obtained, this trimetaphosphate

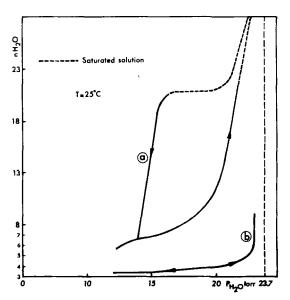


FIGURE 1 Sorption isotherms of two NaCaP₃O₉,3H₂O characteristic plugs.

appeared to absorb variable amounts of water, far larger than $3H_2O$. SEM (stereoscan-type) analysis showed that the highly-adsorbant samples were made of hollow needles, 1 μ wide (internal diameter) whereas the others were made of needles closed at both tips (Figures 2 and 3). The high adsorption capacity noticed for certain plugs is, thus, certainly due to the presence of these macrochannels within which a capillary condensation occurs. We also noticed that a fresh material prepared by alcohol precipitation and composed of needles closed at both ends contains $2H_2O$ and has a hydration extent fluctuating around $3H_2O$, depending on the hygrometric degree of the

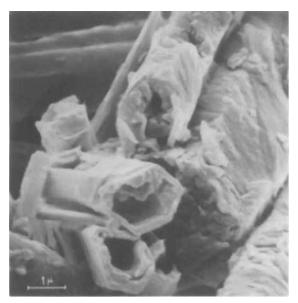


FIGURE 2 NaCaP₃O₉,3H₂O morphology of high-adsorption capacity: curve a, Figure 1.

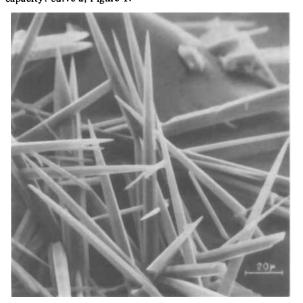


FIGURE 3 NaCaP₃O₉,3H₂O morphology of low-adsorption capacity: curve b, Figure 1.

ambient atmosphere, only when it is left in ambient air, after 48 hours. The molecule belonging to range $3H_2O-2H_2O$ is probably loosely-bonded to the lattice. Thus, depending on the solid morphology and room water pressure, the hydration rate varies considerably from one plug to another.†

STABILITY IN AMBIENT PRESSURE AND TEMPERATURE CONDITIONS

A few months following preparation (6 months maximum), the trimetaphosphate, in room conditions, is converted into NaH₂ PO₄, H₂O and CaH₂ P₂O₇. Two facts tend to prove that the amount of both compounds formed is stoichiometric and satisfies:

 $NaCaP_3O_9,3H_2O \rightarrow NaH_2PO_4,H_2O + CaH_2P_2O_7$

Moreover, at 600° C, an ignition loss of the mixture obtained through conversion of the trimetaphosphate shows the loss of $3H_2$ O and the formation of polyphosphate according to:

 $NaH_2PO_4, H_2O + CaH_2P_2O_7 \rightarrow NaCa(PO_3)_3 + 3H_2O$

Furthermore, a mole to mole mixture of NaH₂ PO₄ (anhydrous or hydrated form) and CaH₂ P₂O₇ raised to 600°C gives a similar result (Table I). The transformation of the trimetaphosphate being relatively slow, the study of its dehydration could be anticipated taking care to change the plugs frequently and checking their purity (TLC, XR).

DEHYDRATION AND REHYDRATION OF NaCaP₃O₉, 3H₂O UNDER FIXED WATER VAPOR PRESSURE

The hydration degree of the plugs used was close to $3H_2O$ in room conditions and they were composed

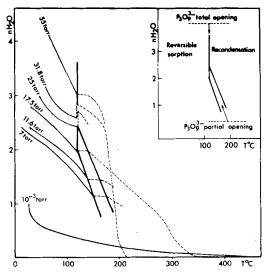
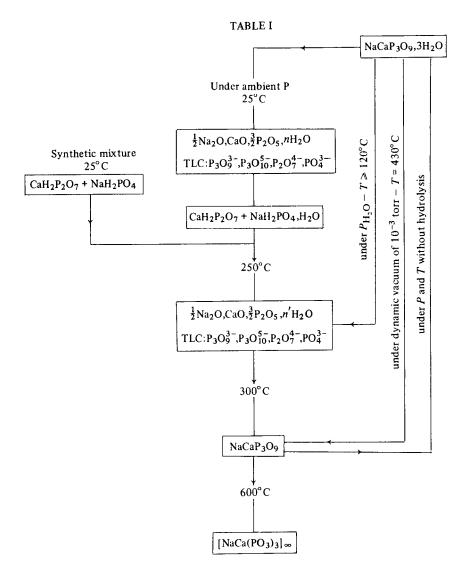



FIGURE 4 NaCaP₃O₉,3H₂O dehydration under fixed P_{H_2O} and by successive temperature steps.

[†] It has not been possible, as yet, to determine the factor allowing numerous, hollow needles to be obtained reproducibly.

of thin needles closed at both tips. The range investigated was between $3H_2\,O$ and the anhydrous material. The thermal dehydration, under fixed water vapor pressure, by successive temperature steps, shows three stages defining three domains (Figure 4).

A Domain of Reversible Sorption of the H₂O Molecules

An amount of H_2 O's, whose variation depends on the water pressure fixed, leaves the lattice reversibly. At the lower boundary pressure, (dynamic vacuum of about 10^{-3} torr), the trimetaphosphate may be entirely dehydrated without a P_3 O_3^{3-} ring splitting by raising the temperature progressively from 25° C

to 430° C. The NaCaP₃O₉, then obtained at 430° C, placed in water vapor pressure and temperature conditions such that the ring does not hydrolyse (next paragraph) rehydrates slowly and yields the initial compound, NaCaP₃O₉, 3H₂O. In these conditions the reversible sorption range overlaps entirely the 3H₂O anhydrous material hydration range. At the higher boundary pressure (P = 55 torr), the 3H₂O trimetaphosphate hydrolyses entirely at 120°C. In these conditions, therefore, there is no stability domain. In between, part of the H₂O's only dehydrates reversibly and the XR diffractograms of NaCaP₃O₉, 3H₂O, remain unchanged while they are removed. The H₂O's, thus, are loosely-bonded to the lattice. In this domain, NaCaP₃O₉, xH₂O-H₂O_g is

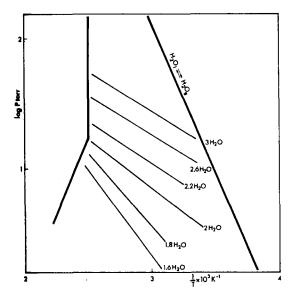


FIGURE 5 Linear transformed isosters.

divariant. The extent of hydration, then, is water vapor pressure and temperature dependent; this accounts for the fact that hydration degrees lower than $3H_2O$ are reported in the literature. An isobar network was experimentally plotted (Figure 4) and the linear transformed curves $\log P = f(1/T)_{nH_2O}$ were deduced from them (Figure 5). The enthalpy and entropy normal isosteric values calculated from these curves (Table II) are abnormally low as they are less than those of water vaporization†. A contrary and reversible effect, thus, coincides with dehydration.

2 A P₃O₉³ Ring Opening Domain

The investigation of the reversible sorption domain of the trimetaphosphate showed that, under water vapor pressure, there is a temperature boundary beyond which a $P_3O_9^{3-}$ ring opening occurs. Under a high water vapor pressure (P>22 torr), the rings open entirely, the final material being a mixture of mono and diphosphate anions yielding no XR diffractograms. This decondensation occurs around 120° C and

$$H_{\text{H}_2\text{O}(g)} - H_{\text{H}_2\text{O}(c)} > H_{\text{H}_2\text{O}(g)} - H_{\text{H}_2\text{O}(l)}$$

i.e.

 $\Delta H_{\text{observed for hydrate}} > \Delta H_{\text{water vaporization}}$ A similar reasoning may be done for the entropy.

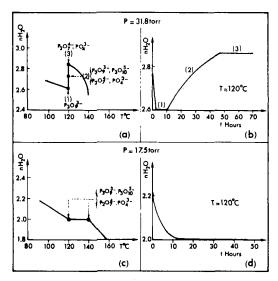


FIGURE 6 P₃O₉³ ring opening process.

is accompanied by a water gain. This rehydration requiring some time, it is then possible to follow the ring opening progress through thin-layer chromatography (Figure 6a and b). Thus, the intermediate formation of a tripolyphosphate anion $P_3O_{10}^{5-}$ showing a mechanism similar to that noticed, several times, in an aqueous medium could be observed:

$$P_3O_9^{3-} \xrightarrow{H_2O} P_3O_{10}^{5-} \xrightarrow{H_2O} PO_4^{3-} + P_2O_7^{4-}$$

However, under lower pressures (P < 22 torr) the ring opening is only partial, the final material obtained being a poorly-crystallized mixture of $P_3O_9^{3-}$, $P_3O_{10}^{5-}$, $P_2O_7^{4-}$, PO_4^{3-} anions. The XR spectrum shows a few bands attributable to the anhydrous form NaCaP₃O₉, and as we can shift from the hydrated form to the anhydrous one, the partial opening may be expressed as follows:

$$P_3O_9^{3-}$$

$$P_3O_{9}^{3-}$$

$$P_3O_{10}^{5-}, P_2O_7^{4-}, PO_4^{3-}$$

This ring opening resulting from an actual hydrolysis, starts under conditions such that the higher the water vapor pressure the higher the hydration extent and the lower the temperature. The thermograms, $nH_2O = f(T)_p$ show a slowing down of dehydration resulting in a weight step over a temperature range of about 20° C (Figure 6c and d). Water vapor, thus, plays a

[†] The H₂O molecule of a hydrated solid has freedom degrees lower than those of the water molecule. Its enthalpy and entropy, thus, are lower than those of the water molecule.

prevailing part in the $P_3O_9^{9^-}$ ring opening and it is to be noticed that under a dynamic vacuum of 10^{-3} torr, $NaCaP_3O_9$, $3H_2O$ dehydrates reversibly without any decondensation.

3 A Recondensation Domain, as $P_3O_9^{3-}$ Rings

The dehydration, by heating, of the hydrated, poorlycrystallized mixture formed during the more or less partial opening of the P₃O₉³ rings, leads to a total recondensation, as $P_3O_9^{3-}$ rings. When the anhydrous state is attained, only the crystallized phase, NaCaP₃O₉ remains. This re-ringing occurs in such a way that the higher the water vapor pressure fixed, the lower the temperature. Thus, the anhydrous phase formation by recondensation of the mono and diphosphate mixture (200°C-350°C), occurs at a much lower temperature, than by direct dehydration of $NaCaP_3O_9$, $3H_2O$ under dynamic vacuum (430°C). The anhydrous phase, identified as the trimetaphosphate NaCaP₃O₉, being stable over a temperature range of 50°C, is converted to polyphosphate [NaCa(PO₃)₃] w by heating. Its inter-planar spacings are listed in Table III.

TABLE II

nH ₂ O	ΔH kcal. mole ⁻¹	ΔS^{O} cal. k^{-1} . $mole^{-1}$
3	2.9	2.2
2.6	2.8	1.0
2.2	3.1	1.3
2	3.6	1.6
1.8	5.3	5.3
1.6	6.2	7.4

INFLUENCE OF HEATING ON DEHYDRATION

The thermograms recorded during the dehydration of NaCaP₃O₉,3H₂O by a linear temperature rise (300°C/h) , under water vapor pressure $(10^{-3}\text{ torr}-31.8\text{ torr})$ (Figure 7), coincide during the removal of the first two H₂O's and show a change in their slope at the 1.6 H₂O hydration level, when a more or less partial opening of the P₃O₃³ rings occurs under water vapor pressure, whereas this phenomenon is not noticed under a dynamic vacuum of 10^{-3} torr. These thermograms are differentiated during the removal of the last H₂O, the anhydrous phase being attained at a temperature which is all the lower as the water vapor pressure is higher, a result which is similar to that observed in the case of dehydration by equilibrium points. The product obtained at a temperature of

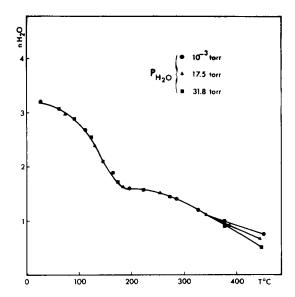


FIGURE 7 NaCaP₃O₉,3H₂O dehydration under fixed P_{H_2O} and by linear temperature rise of about 300° C/h.

about 500°C, either under water vapor pressure or dynamic vacuum, still contains a certain amount of water (0.4 to 0.6 H_2O) and appears as a mixture of NaCaP₃O₉ and [NaCa(PO₃)₃]_∞, the anhydrous phase being made of polyphosphate only. The anhydrous trimetaphosphate, thus, cannot be isolated by a temperature rise, whatever the water vapor fixed.

ASSUMPTION OF AN INTERNAL HYDROLYSIS

The ease with which sodium calcium trimetaphosphate hydrolyses in the presence of water vapor pressure leads us to assume an internal hydrolysis, a phenomenon already observed for cadmium trimetaphosphate, $Cd_3(P_3O_9)_2$, $14H_2O$. ^{10,11} Indeed, the study of this trimetaphosphate dehydration along with a study of the mobility of water molecules by NMR showed that part of the $14H_2O$'s is retained by the $P_3O_9^{3-}$ rings. This hydrolysis results from the transfer of one of the protons initially belonging to an H_2O molecule into an external oxygen of the anionic $P_3O_9^{3-}$ rings. Group $[3H^+,P_3O_9^{3-}]$, highly unstable in presence of water vapor, then, breaks down all the more easily as the water vapor pressure fixed is higher.

To check this assumption, several experiments were carried out to find out the nature of the H₂O bonds within the lattice. NMR and IR spectroscopy show several types of water molecules: highly-mobile H₂O's, H₂O's loosely-bonded to the lattice and most probably OH⁻'s. These spectra are just being interpreted. Heterogeneous catalysis tests, however, gave

positive results. Sodium calcium trimetaphosphate was partially dehydrated under a dynamic vacuum of 10⁻³ torr at 160°C and, at this temperature, it was noticed, that a flow of isobutene (yield: 0.2 mmole/h) led to the formation of an isooctene dimer (3.5%) and a trimer in C₁₂H₃₆ (1%). These results, specific to a Brönstedt acid can be obtained in the same experimental conditions as the monophosphoric acid. The H⁺ catalytic ions can only come from a dissociation of the H₂O's contained in the trimetaphosphate and behave, regarding catalysis, like the protons of monophosphoric acid. The catalyst, CaNaP₃O₉, xH₂O, thus, is liable to act as group $[3H^+,P_3O_9^{3-}]$. This result, thus, sustains the internal hydrolysis assumption, accounting for the abnormally low values of the normal isosteric enthalpies and entropies. Indeed, it results in water retention at ring level i.e. by a phenomenon opposed to dehydration.

COMPARED DEHYDRATIONS OF MIXTURE NaH₂PO₄ + CaH₂P₂O₇ AND NaCaP₃O₉,3H₂O

In the same way as for NaCaP₃O₉,3H₂O, the thermal dehydration of the stoichiometric mixture, NaH₂PO₄ + CaH₂P₂O₇ leads to the final formation of polyphosphate, [NaCa(PO₃)₃] $_{\infty}$. It, thus, seemed interesting to investigate whether, in the case of this mixture, the formation of the anhydrous trimetaphosphate preceded that of the polyphosphate. For this purpose,

TABLE III

NaCaP ₃ O ₉ our values		NaCaP ₃ O ₉ by W. FELDMANN	
I/I_0	dÅ	I/I_0	dÅ
15 20	7.67 5.95		7.7
100	(5.13 (5.09	100 100	5.2 5.0
2 2 5	4.61 4.53		
5 30	4.10 3.84	50	3.8
2 2	3.74 3.58		
45	$\begin{cases} 3.24 \\ 3.22 \end{cases}$	50	3.2
10	2.92	25	3.0
40	2.85 2.82	50	2.9
2	2.78		

NaH₂PO₄ + CaH₂P₂O₇, was heated at room pressure and around 250°C. NaCaP₃O₉ actually formed. The compared dehydration of the mixture and NaCaP₃O₉ is summed up in Table I.

CONCLUSION

The normal extent of hydration for sodium calcium trimetaphosphate is possibly 3H₂O and the large amounts of water that it can further fix result from a capillary condensation within macrochannels formed during crystallization. The 3H₂O's show the characteristic features of loosely-bonded molecules, located in micropores. In the presence of water vapor an internal hydrolysis leads to a more or less partial opening of the $P_3O_9^{3-}$ rings (hence this compound instability at room conditions), whereas under a dynamic vacuum of 10⁻³ torr, the trimetaphosphate may be entirely dehydrated without any decondensation. Whatever the dehydration process, the thermal dehydration yields the stable anhydrous trimetaphosphate within a narrow temperature range, preceding the occurrence of polyphosphate. Placed in specific temperature and pressure conditions the anhydrous trimetaphosphate may recover the extent, $3H_2O$.

ACKNOWLEDGEMENT

We would like to thank Professor F. Gault and his co-worker M. F. Fajula (Institut de Chimie, Strasbourg, France) for the heterogeneous catalysis experiments they so kindly carried out and interpreted.

REFERENCES AND NOTES

- 1. C. G. Lindbom, Ber 8, 122 (1875).
- C. Martin and A. Durif, Bull. Soc. Fr. Mineral Cristallogr. 95, 149 (1972).
- 3. W. Feldmann, Z. anorg. allgem. chem. 400 no 2, 97 (1973).
- E. Thilo and I. Grunze, Z. anorg. allgem. chem. 290, 223 (1957).
- 5. A. Durif, C. R. Acad. Sc. Paris 275, 1379 (1972).
- 6. F. Lavanant, Thèse Ingénieur-Docteur Dijon (1963).
- 7. D. Michot, Thèse Docteur 3ème Cycle Dijon (1975).
- 8. P. Barret and N. Gerard, Brevet CNRS no P 921010.
- J. Aurenge, M. Degeorges and J. Normand, Bull. Soc. chim. Fr. 508 (1964).
- D. Michot and M. H. Simonot-Grange, ler Symposium International de la Chimie Hétérocyclique Minérale, Besançon, France, Juin 1975.
- C. Doremieux-Morin, ler Symposium International de la Chimie Hétérocyclique Minérale, Besançon, France, Juin 1975.